Détail de l'auteur
Auteur ANTHONY D. JOSEPH |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Adversarial machine learning / ANTHONY D. JOSEPH (C 2019)
Titre : Adversarial machine learning Type de document : texte imprimé Auteurs : ANTHONY D. JOSEPH Editeur : cambridge university press Année de publication : C 2019 Importance : 1 vol. (XII-325 p.) Présentation : ill. Format : 26 cm ISBN/ISSN/EAN : 978-1-107-04346-6 Note générale : "Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inference, learn the latest practical techniques for investigating system security and performing robust data analysis, and gain insight into new approaches for designing effective countermeasures against the latest wave of cyber-attacks. Privacy-preserving mechanisms and the near-optimal evasion of classifiers are discussed in detail, and in-depth case studies on email spam and network security highlight successful attacks on traditional machine learning algorithms. Providing a thorough overview of the current state of the art in the field, and possible future directions, this groundbreaking work is essential reading for researchers, practitioners and students in computer security and machine learning, and those wanting to learn about the next stage of the cybersecurity arms race"--Provided by publisher
Bibliogr. p. 307-321Langues : Anglais (eng) Index. décimale : 006.31 Résumé : Written by leading researchers, this complete introduction brings together all the theory and tools needed for building robust machine learning in adversarial environments. Discover how machine learning systems can adapt when an adversary actively poisons data to manipulate statistical inference, learn the latest practical techniques for investigating system security and performing robust data analysis, and gain insight into new approaches for designing effective countermeasures against the latest wave of cyber-attacks. Privacy-preserving mechanisms and the near-optimal evasion of classifiers are discussed in detail, and in-depth case studies on email spam and network security highlight successful attacks on traditional machine learning algorithms. Providing a thorough overview of the current state of the art in the field, and possible future directions, this groundbreaking work is essential reading for researchers, practitioners and students in computer security and machine learning, and those wanting to learn about the next stage of the cybersecurity arms race Permalink : https://elibrary.esi-sba.dz/opac_css/index.php?lvl=notice_display&id=1656 Réservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 099-00565-01 ANT Livre Bibliothèque ESI-SBA Documentaires Disponible 099-00565-02 ANT Livre Bibliothèque ESI-SBA Documentaires Disponible Aucun avis, veuillez vous identifier pour ajouter le vôtre !